石墨烯具有优良的性能,科研工作者考虑将其作为增强体加入到基体材料中以提高基体材料的性能。但是,由于其较大的比表面积,再加上片层与片层之间容易产生相互作用,极易出现团聚现象,而且团聚体难以再分开,不仅降低了自身的吸附能力而且阻碍石墨烯自身优异性能的发挥,从而影响了石墨烯增强复合材料性能的改进。为了得到性能优异的石墨烯增强复合材料,科研工作者在克服石墨烯团聚、使其分散方面做了诸多研究。分散方法简介如下:
1、机械分散发
利用剪切或撞击等方式改善石墨烯的分散效果。吴乐华等以纯净石墨粉为原料,无水乙醇为溶剂,采用湿法球磨配合超声、离心等方式得到石墨烯分散液,通过扫描电镜 透射电镜和拉曼光谱分析均证明石墨烯为几个片层分散。
2、超声分散发
利用超声的空化作用,以高能高振荡降低石墨烯的表面能,从而达到改善分散效果的目的。Umar 等将石墨在 N-甲基叱咯烷酮(NMP)中采用低功率超声处理,随着超声时间的延长,石墨烯分散液的浓度随之升高,当超声时间超过462 h后,石墨烯分散液浓度能够达到 1.2mg/mL,这是由于超声所产生的溶剂与石墨烯之间的能量大于剥离石墨烯片层所需要的能量,进而实现了石墨烯的分散。
3、微波辐射发
采用微波加热的方式产生高能高热用以克服石墨烯片层间的范德华力。Janowska 等采用氨水作为溶剂,利用微波辐射处理在氨水中的膨胀石墨以制备石墨烯分散液透射电镜观测结果表明制得的石墨烯主要为单、双和少层(少于十层)石墨烯,并且能够在氨水中稳定分散,研究证实微波辐射产生的高温能够使氨水部分气化,产生的气压对克服石墨烯片层间的范德华力具有显著的作用。
4、表面改性
通过离子液体对膨胀石墨进行表面改性来提高石墨烯的分散性。这种改性属于物理方法,它能降低改性过程对石墨烯结构和官能团的影响。经过改性的石墨烯片层粒径小,呈现出褶皱的状态;通过离子液体改性后的石墨烯可以长时间在丙酮溶液中保持均匀的分散状态,并且能够均匀分布在硅橡胶基体中,离子液体链长增加使得样品更加均匀地分散。
采用具有强还原能力的没食子酸作为稳定剂和还原剂,制得了具有高分散性的石墨烯。由于分子中苯环结构和石墨烯之间形成了π一.共扼相互作用,从而作为稳定剂吸附在石墨烯表面,这使得石墨烯片层具有较强的负电性,阻止了石墨烯片进一步堆积在一起,使其更加难于团聚保证了所制备的石墨烯具有较高的分散性能。
5、添加分散发
一般来说石墨烯本身既不亲水又不亲油,常用的分散剂分子很难与石墨烯形成较强的物理吸附作用,对石墨烯的分散效果不好,必须采用特殊结构的分散剂才能分散和稳定石墨烯。分散剂从分子结构上要求一端能与石墨烯片形成较强的作用,另一端要与树脂体系相容性好。只有分散剂与石墨烯片层结构形成较强的相互作用,克服了石墨烯片之间的T-亚相互作用,才能将其相对稳定地分散到涂料树脂当中。相较于化学改性分散法,分散剂分散法主要基于范德华力和π-T相互作用等,可以避免破坏石墨烯片层表面的共驱结构,较好地保持石墨烯的特性,而且效率高,使用方便。
6、原位聚合法
先将纳米粒子在单体中均匀分散,然后再用引发剂引发聚合,使纳米粒子或分子均匀地分散在聚合物基体上并且形成原位分子聚合材料。原位多相聚合既保持了粒子的纳米特性,又实现了填充粒子的均匀分散,可以形成带有弹性包覆层的核一壳结构的纳米形粒子。因为外层是有机聚合物,所以它可以提高材料与有机相的亲和力。
7、电荷吸引
采用一种电荷吸引的方法来解决石墨烯的分散性。用Hummers法制备出了含有大量的含氧基团的氧化石墨烯使得氧化石墨烯带有很强的负电荷。然后使铝粉表面带有正电荷,蕞后利用正负电荷吸引的方式来解决石墨烯的分散性问题。
石墨烯的分散问题一直是石墨烯领域的难点问题,也是石墨烯走向广泛应用必须要克服的问题。目前,石墨烯的优异性能在复合材料中并没有完全发挥如何在保护石墨烯自身结构不受破坏的同时保证石墨烯稳定分散,蕞大程度发挥出石墨烯的优良性能有待于进一步研究和探索。
上海氢田新材料科技有限公司